

WISCONSIN INTEGRATED RESOURCE MANAGEMENT CONFERENCE

Maximizing the Potential of Data in Material Recovery Facilities

Wisconsin Integrated Resource Management Conference Friday, February 28, 2025 at 10:30 am

Steven Schilling, P.E.

Senior Project Manager Gershman, Brickner & Bratton, Inc.

UW-Madison, B.S. Civil and Environmental Engineering

Maximizing the Potential of Data in Material Recovery Facilities

SORTFIOW AI MAPPER V2.3				English	• 🕐	Welcome, Luc Mallin	
PROCESS CHAR	AVAILABILITY	PRODUC	CTION REVENUE LO	SS CONFIG		REPORT	
Plastic Recovery Facility (P1)	🗂 Jan 02, 2025 / 07:00 - Jan 02, 2025 / 18:	:00			Extract	Apply	
NIR P1 (+PET)		•	Throughput Rate, t/h			•	
Process item 2			Criteria *				
NIR P1 (+PET)		*	Recovery performance, %			-	
We car Here w It also	n analyse the variation of per re're looking at the impact of possible to combine criteria	rformance th f Throughput from 2 differ	roughout the shift. on Recovery performan rent capture points on th	ce for NIR P1. e same graph.			,
We can Here w It also Throughput Rate, t/h	n analyse the variation of per re're looking at the impact of possible to combine criteria	rformance th f Throughput from 2 differ	roughout the shift. on Recovery performanc rent capture points on th	ce for NIR P1. e same graph.		Recovery performance, %	
We can Here w It also Throughput Rate, t/h	n analyse the variation of per re're looking at the impact of possible to combine criteria	rformance th f Throughput from 2 differ	roughout the shift. on Recovery performance rent capture points on th	ce for NIR P1. e same graph.		Recovery performance, %	,
We can Here w It also Throughput Rate, t/h 20 18	n analyse the variation of per re're looking at the impact of possible to combine criteria	rformance th f Throughput from 2 differ	nroughout the shift. on Recovery performand rent capture points on th	ce for NIR P1. e same graph.		Recovery performance, % 90 90 80	,
We can Here w It also	n analyse the variation of per re're looking at the impact of possible to combine criteria	rformance th f Throughput from 2 differ	rroughout the shift. on Recovery performan rent capture points on th	ce for NIR P1. e same graph.		Recovery performance, % 90 90 80 70 60	,
We can Here w It also	n analyse the variation of per re're looking at the impact of possible to combine criteria	rformance th i Throughput from 2 differ	nroughout the shift. on Recovery performance rent capture points on th	ce for NIR P1. e same graph.		Recovery performance, % 90 100 80 70 60 50	,
We can Here w It also	n analyse the variation of per re're looking at the impact of possible to combine criteria	rformance th i Throughput from 2 differ	rroughout the shift. on Recovery performan rent capture points on th	ce for NIR P1. e same graph.		Recovery performance, % 90 100 ● 90 80 70 60 50 40 30	
We can Here w It also	n analyse the variation of per re're looking at the impact of possible to combine criteria	rformance th i Throughput from 2 differ	rroughout the shift. on Recovery performan rent capture points on th	ce for NIR P1. e same graph.		Recovery performance, % 90 80 70 60 50 40 30 20	
We can Here w It also	n analyse the variation of per re're looking at the impact of possible to combine criteria	rformance th i Throughput from 2 differ	nroughout the shift. on Recovery performance rent capture points on th	ce for NIR P1. e same graph.		Recovery performance, % 90 80 70 60 50 40 30 20 10 0	

SortFlow AIM	APPER V2.3					English	• •	welcome, Luc Mallin
PROCESS	CHART	AVAILABILITY	PRODU	UCTION	REVENUE LOSS	CONFIG		REPORT
Plastic Recovery Fac	ility (P1) 💼 Jan 02, 20	- 125 / 07:00 - Jan 02, 2025 / 18:0	00				Extrac	et Apply
Process item 1				Criteria *				
NIR P1 (+PET)			*	Throughput I	Rate, t/h			*
Process item 2				Criteria *				
Process rem 2				Recovery per	formance, %			~
During the first half	of the shift, we obser pacting PET recovery	rved that the through performance, which	nput exceed	ded the max o the 70% ra	kimum recommende ange.	d		
During the first halt level, negatively im	of the shift, we obser pacting PET recovery	rved that the through performance, which	nput exceed n dropped t	ded the max o the 70% ra	kimum recommende ange.	d		Recovery performance, %
During the first halt level, negatively im Throughput Rate, Uh 20	of the shift, we obser pacting PET recovery	rved that the through performance, which	nput exceed	ded the max o the 70% ra	kimum recommende ange.	d		Recovery performance, % 90 90 @ 90
During the first halt level, negatively im Throughput Rate, Uh 20 18	of the shift, we obser pacting PET recovery	rved that the through performance, which	nput exceed n dropped t	ded the max o the 70% ra	kimum recommende ange.	d		Recovery performance, % 90 100 @ 90 80
During the first halt level, negatively im Throughput Rate, Uh 20 18	of the shift, we obser pacting PET recovery	Proughput Rate: 12 Recovery performance	nput exceed n dropped to	ded the max o the 70% ra	kimum recommende ange.	d		Recovery performance, % 90 000 80 80 73
During the first hall level, negatively im Throughput Rate, Uh 20 18	of the shift, we obser pacting PET recovery	Throughput Rate: 12 Recovery performance	nput exceed n dropped t	ded the max o the 70% ra	kimum recommende ange.	d		Recovery performance, % 90 00 80 73 60
During the first halt level, negatively im Throughput Rate, Uh 20 18 16	of the shift, we obser pacting PET recovery	Throughput Rate: 12 Recovery performance	nput exceed n dropped t	ded the max o the 70% ra	kimum recommende ange.	d		Recovery performance, % 90 90 73 60 50
During the first halt level, negatively im Throughput Rate, Uh 20 18 16	of the shift, we obser pacting PET recovery	Throughput Rate: 12 Recovery performance	nput exceed n dropped t	ded the max o the 70% r	kimum recommende ange.	d		Recovery performance, % 90 90 73 60 50 40
During the first halt level, negatively im Throughput Rate, Uh 20 18 16 15 12 9,47	of the shift, we obser pacting PET recovery	Throughput Rate: 12 Recovery performance	2.49 t/h coc: 73.74 %	ded the max o the 70% r	kimum recommende ange.	d		Recovery performance, %
During the first halt level, negatively im Throughput Rate, Uh 20 18 19 19 10 9.47	of the shift, we obser pacting PET recovery	Throughput Rate: 12 Recovery performance	1 dropped t	ded the max o the 70% r	ximum recommende ange.	d		Recovery performance, % 90 90 90 90 90 90 90 90 90 90 90 90 90

C SortFlow AI MAPPER 12.3 PROCESS CHART			r L	Another approach to evaluating shift performance, enabled by leveraging live data, is tracking unproductive runtime occurrences. These occur when only some machines are supplied with material, potentially signaling infeed or performance issues. Additionally, this method can be used to detect jams when operating the application in Live mode.							
Plastic R	ecovery Facility (P1) 🗖 Jan	02, 2025 / 07:00	- Jan 02, 2025 / 18	:00						
					Plant	Downtime	Un	productive Runtime	Pro	ductive Runtime	
	Plant Downtime 6.81% / 0.75 hr	:	Numb	er of occurrences	2		10		10		
	Unproductive Runt 10.64% / 1.17 h	ime: r	Total		0.75	hr	1.1	7 hr	9.08	3 hr	
	Productive Runtime: 82.55% / 9.08 hr	ne: r	Short	est	0.33	hr	0.0	18 hr	0.08	3 hr	
			Longe	est	0.42	hr	0.3	I3 hr	2.00) hr	
2%											
Plant	Availability Tir	meline									
_2%	08:00	09:00	10:00	11:00	12:00	13:00	14:00	15:00	16:00	17:00	
Unpro	oductive Time	(hours)									

SortFlow Al	MAPPER v2.3 Here, we	evaluate the qu	uantity and quality	× of residue output	, as well as the opera	English - ? Welcome, Luc Mallin.	e
PROCESS	c represen To detern target ma Residue	its, using data fr mine revenue lo aterial lost to res yield is estimat	om an Al camera. Iss, we calculate sidue and the ass red indirectly usin	the difference betw ociated disposal c g NIR P1, the earlie	ween the unrealised i osts. est capture point in th	revenue from Apply	
Output Product*		← Capture NIR F	ed Against P1 (+PET)		Residue Cost (£) * ▼ 150		
13 Residue	.44 2 Yield (%)	16. Residue Tonn	.32 age (tonnes)	44 . Residue F	34 Purity (%)	3 824.76 Revenue Loss (£)	
Proxy Capture Point Tonnage	(1)			Proxy Capture Point Target Mater 89.09	ial (%)		
		Prockdown %	Price per toppe	Unrealised Rev.	Disposal Cost	Revenue Loss	_
Material	Quantity (tonnes)	breakuowii //	r noc per tonne		Disposal cost		
Material PET Clear	Quantity (tonnes)	11.15	£ 300	£ 546.00	£ 273.00	£819.00	
Material PET Clear Non-Ferrous	Quantity (tonnes) 1.82 0.59	11.15 3.61	£ 300 £ 1178	£ 546.00 £ 694.73	£ 273.00 £ 88.50	£ 819.00 £ 783.23	

Thank You!

Steven Schilling, P.E. GBB Senior Project Manager

(847) 452-5081 sschilling@gbbinc.com "The multidisciplinary elements of the materials management industry inspire me with the possibility to create far-reaching change toward more sustainable, resilient, and socially just communities."